Processing intrusion detection alert aggregates with time series modeling
نویسندگان
چکیده
The main use of intrusion detection systems (IDS) is to detect attacks against information systems and networks. Normal use of the network and its functioning can also be monitored with an IDS. It can be used to control, for example, the use of management and signaling protocols, or the network traffic related to some less critical aspects of system policies. These complementary usages can generate large numbers of alerts, but still, in operational environment, the collection of such data may be mandated by the security policy. Processing this type of alerts presents a different problem than correlating alerts directly related to attacks or filtering incorrectly issued alerts. We aggregate individual alerts to alert flows, and then process the flows instead of individual alerts for two reasons. First, this is necessary to cope with the large quantity of alerts – a common problem among all alert correlation approaches. Second, individual alert’s relevancy is often indeterminable, but irrelevant alerts and interesting phenomena can be identified at the flow level. This is the particularity of the alerts created by the complementary uses of IDSes. Flows consisting of alerts related to normal system behavior can contain strong regularities. We propose to model these regularities using non-stationary autoregressive models. Once modeled, the regularities can be filtered out to relieve the security operator from manual analysis of true, but low impact alerts. We present experimental results using these models to process voluminous alert flows from an operational network.
منابع مشابه
Real-Time intrusion detection alert correlation and attack scenario extraction based on the prerequisite consequence approach
Alert correlation systems attempt to discover the relations among alerts produced by one or more intrusion detection systems to determine the attack scenarios and their main motivations. In this paper a new IDS alert correlation method is proposed that can be used to detect attack scenarios in real-time. The proposed method is based on a causal approach due to the strength of causal methods in ...
متن کاملAlert correlation and prediction using data mining and HMM
Intrusion Detection Systems (IDSs) are security tools widely used in computer networks. While they seem to be promising technologies, they pose some serious drawbacks: When utilized in large and high traffic networks, IDSs generate high volumes of low-level alerts which are hardly manageable. Accordingly, there emerged a recent track of security research, focused on alert correlation, which ext...
متن کاملTRINETR: An Intrusion Detection Alert Management System
TRINETR: An Intrusion Detection Alert Management and Analysis System by Jinqiao Yu Intrusion detection system (IDS) is a software system or hardware device deployed to monitor network and host activities including data flows and information accesses etc. to capture suspicious activities. In recent years, IDS has began to gain wide acceptance as a necessary and worthwhile investment on security....
متن کاملReal-Time Intrusion Detection Alert Correlation
Real-Time Intrusion Detection Alert Correlation
متن کاملIntrusion Detection System with Data Stream Modeling using Conditional Privileges
IDS for computer network is capable of detecting and alerting the systems administrator on potential intrusion, providing guidance against any potential loss of integrity and confidentiality to the enterprise’s valuable intellectual assets. In this paper, the layered model for IDS and alert aggregation technique is used. In this layered IDS architecture, each layer assesses, filters, and/or agg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information Fusion
دوره 10 شماره
صفحات -
تاریخ انتشار 2009